Synthesis and reactions of cubane-type iron-sulfur-phosphine clusters, including soluble clusters of nuclearities 8 and 16.
نویسندگان
چکیده
A family of soluble, reduced iron-sulfur clusters with nuclearities 4, 8, and 16 having tertiary phosphine ligation and based on the Fe(4)S(4) cubane-type structural motif has been synthesized. The results of this investigation substantially extend and improve the results of our original work on iron-sulfur-phosphine clusters (Goh, C.; Segal, B. M.; Huang, J.; Long, J. R.; Holm, R. H. J. Am. Chem. Soc. 1996, 118, 11844). A general property of this cluster family is facile phosphine substitution. The clusters [Fe(4)S(4)(PR(3))(4)](+) are precursors to monosubstituted [Fe(4)S(4)(PR(3))(3)X] (X = Cl-, RS-), homoleptic [Fe(4)S(4)(SR)(4)](3-), and all-ferrous monocubanes [Fe(4)S(4)(PR(3))(4)] (R = Pr(i), Cy, Bu(t); generated in solution). In turn, [Fe(4)S(4)(PPr(i)()(3))(3)(SSiPh(3))] and [Fe(4)S(4)(PPr(i)(3))(4)] can be transformed into the dicubanes [Fe(8)S(8)(PPr(i)()(3))(4)(SSiPh(3))(2)] and [Fe(8)S(8)(PPr(i)((3))(6)], respectively. Further, the tetracubanes [Fe(16)S(16)(PR(3))(8)] are also accessible from [Fe(4)S(4)(PR(3))(4)] under different conditions. X-ray structures are described for [Fe(4)S(4)(PCy(3))(3)X] (X = Cl-, PhS-), [Fe(8)S(8)(PPr(i)(3))(4)(SSiPh(3))(2)], [Fe(8)S(8)(PPr(i)()(3))(6)], and [Fe(16)S(16)(PCy(3))(8)]. The monosubstituted clusters show different distortions of the [Fe(4)S(4)](+) cores from idealized cubic symmetry. The dicubanes possess edge-bridged double cubane structures with an Fe(2)(mu(4)-S)(2) bridge rhomb and idealized C(2)(h)() symmetry. The ready cleavage of these clusters into single cubanes is considered a probable consequence of strained bond angles at the mu(4)-S atoms. Tetracubanes contain four individual cubanes, each of which is implicated in two bridge rhombs so as to generate a cyclic structure of idealized D(4) symmetry. Redox properties and Mössbauer spectroscopic parameters are reported. The species [Fe(4)S(4)(PR(3))(4)] (in solution), [Fe(8)S(8)(PR(3))(6)], and [Fe(16)S(16)(PR(3))(8)] are the only synthetic all-ferrous clusters with tetrahedral iron sites that have been isolated. Their utility as precursors to other highly reduced iron-sulfur clusters is under investigation.
منابع مشابه
[Fe4S4] Core Aggregation upon Loss of Phosphine
The influence of tertiary phosphines on the stability of FeS3P coordination units and the formation of iron-sulfur clusters has been investigated. Reaction of [Fe4S4Cl4] with a small excess of PR3 in acetonitrile/THF affords the cubane-type clusters [Fe4S4(PR3)4] (R ) Cy, But, Pri), one-electron reduced over the initial cluster and possessing an S ) /2 ground state. These clusters may be electr...
متن کاملVanadium-iron-sulfur clusters containing the cubane-type [VFe3S4] core unit: synthesis of a cluster with the topology of the PN cluster of nitrogenase.
A synthetic method affording a topological analogue of the electron-transfer P-cluster of nitrogenase (Fe(8)S(7)(mu(2)-S(Cys))(2)) in the P(N) state has been devised, based in part on our previous development of cubane-type VFe(3)S(4) clusters (Hauser, C.; Bill, E.; Holm, R. H. Inorg. Chem. 2002, 41, 1615-1624). The cluster [(Tp)VFe(3)S(4)Cl(3)](2-) (1) is converted to [(Tp)VFe(3)S(4)(PR(3))(3)...
متن کاملSolvent Tuning of Properties of Iron-Sulfur Clusters in Proteins
Proteins containing Fe4S4 iron-sulfur clusters are ubiquitous in nature and catalyze one-electron transfer processes. These proteins have evolved into two classes that have large differences in their electrochemical potentials: high potential iron-sulfur proteins (HiPIPs) and bacterial ferredoxins (Fds). The role of the surrounding protein environment in tuning the redox potential of these iron...
متن کاملInitial synthesis and structure of an all-ferrous analogue of the fully reduced [Fe4S4] cluster of the nitrogenase iron protein
The synthetic cubane-type iron–sulfur clusters [Fe4S4(SR)4] form a four-member electron transfer series (z 3 , 2 , 1 , and 0), all members of which except that with z 0 have been isolated and characterized. They serve as accurate analogues of protein-bound [Fe4S4(SCys)4] redox centers, which, in terms of core oxidation states, exhibit the redox couples [Fe4S4] /2 and [Fe4S4] /1 . Clusters with ...
متن کاملCopper(i) halide clusters based upon ferrocenylchalcogenoether ligands: donors, halides and semi-rigidity effects on the geometry and catalytic activity.
Six copper(i) halide clusters based upon ferrocenyltelluroethers or ferrocenylselenoethers, 1-6, have been synthesized and structurally characterized by an X-ray crystallographic study. These structures include a discrete step-cubane Cu4I4 cluster, a 1D chain with rhomboid Cu2X2 clusters, a 1D chain with cubane Cu4I4 clusters and a 2D network with Cu2I2 clusters. 1-3 are the first structurally ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inorganic chemistry
دوره 42 1 شماره
صفحات -
تاریخ انتشار 2003